
Shadowclone: Thwarting and

Detecting DOP Attacks with Stack

Layout Randomization and Canary

EECS 583

Yunjie Pan, Shibo Chen, Cheng Chi, Yifan Guan

Shadowclone

● Motivation & Background

● Methodology

● Implementation

● Evaluation

● Demo

Shadowclone

● Motivation & Background

● Methodology

● Implementation

● Evaluation

● Demo

Modeled after FTP server

Uses a stack buffer

overflow vulnerability to

control a few stack

variables

DOP Example

Buffer Overflow

Affected Variables

Gadget Dispatcher

Gadgets

Simple Stack Overflow

If successful, var1 and var

2 will be changed to 583

Simple Example

Buffer Overflow

Affected
Variables

Prior work - Smokestack

Randomizes the order of stack variables during runtime with P-BOX

+ Much harder to deliver DOP attacks

+ Negligible memory overhead

- Runtime performance overhead

- Cannot detect attacks when happening

Goals

● Reduce runtime overhead by compile time

randomization

● Detect attacks when happening

Threat Model

▪ CFI (Control Flow Integrity) defenses deployed

▪ Stack buffer overflow vulnerability

▪ Attackers cannot see the code, but can learn gradually

Shadowclone

● Motivation & Background

● Methodology

● Implementation

● Evaluation

● Demo

Shadowclone

• Generate compile-time

randomized clones of vulnerable

functions

• Insert compile-time random canary

into stack variables and check

before the function returns

• Randomly select copy to execute

in run time

Buffer Overflow

Affected
Variables

Canary Var

Hard-coded canary check
(cmp embedded constant)

Randomized
Stack order

Randomly select
clone to execute

Shadowclone

● Motivation & Background

● Methodology

● Implementation

● Evaluation

● Demo

Implementation

1. Find all concrete functions (except main and syscall)

2. Find all alloca instructions

3. Clone a function min(threshold, num(alloca)!) times

4. Randomize the order of stack variables

5. Insert the canary and checks

6. Convert original function to randomly select a clone in run-time

Randomize the order of stack variables

Generate a random ordering (a configuration)

If this configuration already exists:

Continue

Else:

Apply this config to one of the clones

Repeat until all clones have been randomized

Insert canary and checks

1. Randomly select an insertion point and insert a 32-bit canary

2. Generate a random number and store it to the location of our canary

3. Insert a compare-and-branch duo before each return instruction

(branch to the exception handler if compromise detected)

Canary Var

Hard Coded CMP

Run-time Selection

get_rand() is defined in

our run-time library

Generates a i32

random number with

RDRAND instruction

Branch based on
random number

Shadowclone

● Motivation & Background

● Methodology

● Implementation

● Evaluation

● Demo

Experiment Setup

Platform:

Xeon Gold 6126, Ubuntu 18.04 Linux, 256GB of memory

Benchmarks:

Three in-House testcases (big_array, wc, and compress)

Three Spec06 benchmarks (bzip2, mcf, and h264ref)

Source of random numbers:

RDRAND

Performance Overhead

5.13%

156.29%

-0.02% 0.00%

94.82%

635.52%

-5.13%

96.25%

0.98% 0.00%

101.76%

639.20%

-5.13%

156.73%

2.04% 0.00%

86.41%

652.19%

wc compress Big Array mcf bzip2 h264ref

Variance of 4 Variance of 8 Variance of 16

Spatial Locality: Code Size (in KB)

14 24 9 27 123
776

14 42 13 76
408

2713

15 64 14 137
743

5083

19 107 18 258

1372

9700

wc compress Big Array mcf bzip2 h264ref

Baseline Variance of 4 Variance of 8 Variance of 16

Spatial Locality: # of I-Cache Misses

-1%

25% 13% 1% 31%

1549%

2% -100% 17% 0% 55%

2562%

3%

139%

27% -2%

-352%

3822%

-1000%

-500%

0%

500%

1000%

1500%

2000%

2500%

3000%

3500%

4000%

4500%

wc compress Big Array mcf bzip2 h264ref

Variance of 4 Variance of 8 Variance of 16

Temporal Locality & Speculation: # of Branch Mispredictions
B

ra
n

c
h

M
is

p
re

d
ic

ti
o

n
s

P
e

rfo
rm

a
n

c
e

O
v
e

rh
e

a
d

-100%

0%

100%

200%

300%

400%

500%

600%

700%

-100%

0%

100%

200%

300%

400%

500%

600%

700%

wc compress Big Array mcf bzip2 h264ref

Variance of 4 Variance of 8 Variance of 16 Performance Overhead

Security Analysis

● The attacker learns quickly

○ Learns about any configuration after this very configuration has been run only once

● The attacker doesn’t trigger any exception by accident

Metrics:

What’s the chance for an attacker to successfully compromise our

system without being detected?

Security Analysis

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

Compromise 1 fucntion Compromise 2 functions Compromise 3 functions

Probability of Attackers Successfully Deliver Attack w/o Being
Detected

Variance of 4 Variance of 8 Variance of 16

Shadowclone

● Motivation & Background

● Methodology

● Implementation

● Evaluation

● Demo

Conclusion

• Shadowclone can efficiently thwarts and detects DOP

attacks.

• Shadowclone has low performance overhead when running

small programs. Its performance deteriorates as the size of

program gets larger and the program gets more function

calls.

Question?

Probability of Attackers Successfully Deliver Attack w/o Being

Detected

● P(attacker succeeds withoutb being attacked)=

σ𝑘=1
𝑘=𝑖𝑛𝑓𝑃 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑘 − 1 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑖𝑙𝑒𝑑 𝑎𝑛𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑏𝑒𝑖𝑛𝑔 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑 ∗

𝑃(𝑡ℎ𝑒 𝑘𝑡ℎ 𝑡𝑖𝑚𝑒 𝑠𝑢𝑐𝑐𝑒𝑒𝑑𝑠 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑏𝑒𝑖𝑛𝑔 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑)

● P(the first time succeed) = 1/N! P(the kth time succeed)= 1/M

○ （N is the average number of stack variables in a function, M is the number of clones）

○ N = 10 in the benchmarks we analyzed

● P(an attack would be detected) = 1/2

