
Shadowclone: Blocking DOP Attacks with Compile
time Stack Layout Randomization

Yunjie Pan
University of Michigan
Ann Arbor, MI, USA

panyj@umich.edu

Shibo Chen
University of Michigan
Ann Arbor, MI, USA
chshibo@umich.edu

Cheng Chi
University of Michigan
Ann Arbor, MI, USA
chicheng@umich.edu

Yifan Guan
University of Michigan
Ann Arbor, MI, USA

yfguan@umich.edu

Abstract—Control-flow hijacking attacks have been hard to
deploy due to the widespread adoption of control-flow attack
defenses such as Control-flow Integrity (CFI). This fact has led
to a wide deployment of exploiting non-control data, which are
not protected by CFI defenses. Non-control data attacks can be
used to corrupt critical data or leak sensitive information. Fur-
thermore, data-oriented programming (DOP) is able to achieve
Turing-complete computation capabilities without leaving the
control-flow graph of the programs. In this paper, we present a
compile time stack layout randomization scheme- Shadowclone
-to thwart and detect DOP attacks effectively. Shadowclone
generates randomized clones of vulnerable target functions and
randomly selects one copy of clones to execute during runtime. In
addition, we also insert compile-time random canaries into stack
variables and check its integrity before the function returns. In
the evaluation section, we show that our approach can thwart
and detect DOP attacks efficiently by limiting attacker’s success
chance to less than 1%. Shadowclone also has low performance
overhead when the program is small and has few function calls.

I. INTRODUCTION

Most of high performance applications are written in C or
C++. Those languages are inherently prone to memory cor-
ruption. Memory corruption is a common approach to deploy
control-flow attacks where the attackers can execute arbitrary
code on the victim machine. Many approaches have been
proposed to protect programs against control-flow attacks,
such as Control Flow Integrity (CFI [1]) and Code Pointer
Integrity (CPI). These approaches help confine programs to
the program-specified control flow graph.

However, non-control data attacks can reuse existing
control-flow to manipulate data without violating constraints
introduced by defenses against control-flow attacks. One
special non-control data attack: Data-Oriented Programming
(DOP) [2] enables attackers to execute instructions within
legitimate control-flow graph by corrupting non-control data
repetitively. DOP has been proved to be Turing-complete, and
can construct expressive non-control data exploits for arbitrary
programs.

Most DOP attacks make the most of the deterministic
nature of stack layout of the program to grant attackers the
ability to generate attack payloads. Smokestack [3] proposed
an effective stack layout randomization technique to thwart
DOP attacks. However, it does not detect attacks while they
are happening.

In our project, we present Shadowclone, a compile-time
stack-layout randomization technique that can both thwart and
detect DOP attacks.

II. SHADOWCLONE RUNTIME STACK LAYOUT
RANDOMIZATION

Randomizing the code layout and the address space can
mitigate control-flow attacks as they require the absolute
address of the assets, either code or sensitive data. Even though
CFI defenses are shown to be effective at mitigating control-
flow attacks, DOP attacks are not stopped by control-flow
denfenses. DOP attacks use the relative distance between local
variables to make use of memory vulnerabilities. Thus, DOP
attacks could circumvent static stack layout randomization and
random padding schemes.

A. Design Objectives

The main objective of our project is to provide a practical
approach to thwart DOP attacks effectively. We aim to only
induce little to none performance overhead. To meet this goal,
our solution should follow the requirements listed below:

• Provide a compile time stack randomization scheme to
mitigate DOP attacks.

• Use canary to detect attacks.
• Have low performance on both CPU-bound and I/O-

bound applications.
• Be compatible with legacy code.

B. Threat Model

In this paper, we assume that the attack initially has no
idea of the configuration we generate for stack allocations.
By exhaustive runs of its target program, attackers could
eventually figure out what all M different configuration are.
Since our project focuses on DOP attacks, we assume that
control-flow defenses, like Control flow integrity (CFI) have
been deployed so that programs are not vulnerable to control-
flow attacks. In all, the threat model of Shadowclone is as
follows:

• In most cases attackers would need at least two functions
to deliver attacks so that the attackers have enough DOP
gadgets. However, as shown in the evaluation section,
Shadowclone is effective even if the attacker only needs
to compromise one function.



• Attackers could use the semantics of the underlying
program to reverse engineer a randomized stack layout
of a function based on a disclosed data that allows the
adversary to instantiate a runtime attack on future calls
of the same function.

• The attacker can perform an infinite number of attempts
before being detected by the system so that he could
figure out all random stack layouts given enough time.

C. Overview of Shadowclone

Non-control data attacks tamper with leaked sensitive mem-
ory, which is not directly used in control flow. In Data-oriented
programming (DOP) [2], it has been proved that non-control
data attacks can be Turing-complete. If the relative address of
stack allocations in known to the attack, a memory corruption
vulnerability is exploited to corrupt non-control data. The
successive steps will utilize memory vulnerability to control
key variables to execute payload instructions. Therefore, our
model needs to ensure that the absolute address as well as
the relative distance of the stack allocations are unknown
to the attacker. Our Shadowclone achieves this by randomly
calling functions with different stack layouts for each function
invocation. The overview of Shadowclone is shown in 1. To
avoid performance overhead when randomizing stack layout at
runtime, different functions with randomized and unique stack
layout is generated at compile time.

Fig. 1. System overview of Shadowclone

D. Analyzing and Randomizing Stack Allocation

In the analysis phase, we identify and collect all stack
allocations in every function of the program. There is no stack
allocation alignment requirement. Because the randomization
of stack allocations is to reorder AllocaInst randomly.
Figure 2 shows the instrumental introduced by Shadowclone.

a) Generating Random Permutation: Given N
AllocaInst, there are N ! possible permutations of
the allocation instructions. In this stage, we randomly choose
M (M < N !) permutations for each function in the program.
To do this, we randomize the order of AllocaInst many
times until there are M unique configurations. The M
configurations are represented as M cloned functions with

unique and randomized stack layout. If there are only one or
two stack allocations in a function, there is no need to do the
randomization.

b) Transforming Function Wrapper: In this step, we
transform the original source code to a function wrapper which
calls cloned functions with different stack layout configura-
tions generated in the previous step. After deleting all BBs
from the original code, we insert Intel RDRAND instruction
to generate true random number to decide which function we
call from the function wrapper. We create callees for each
randomized function, setting up arguments to pass in and
return value. The randomized calling functions is represented
as conditional branches to BBs where each BB is a caller to
randomized function.

c) Insert Canary Check: Unlike Smokestack [3] which
is lack of non control-flow attack detection, in this step we
insert compile-time random canary in stack variables in order
to prevent an attacker from knowing canary value. The random
canary is generated at function initialization, and stored in
a local variable inserted randomly into the stack variables.
When the buffer overflows, the random canary will possibly
be corrupted, and a failed verification of the canary value will
therefore alert of an overflow, which can then be detected and
handled. If a DOP attack is detected by canary, the program
will terminates and throws an exception.

Fig. 2. The overview of the stack layout randomization steps involved in
Shadowclone function calls and returns



III. IMPLEMENTATION

We implement our Shadowclone on top of the LLVM 10
compilation framework. Our analysis and instrumental pass are
implemented on the LLVM intermediate representation (IR) to
randomize stack. We use clang as frontend to generate LLVM
IR from source code.

A. Analysis Pass

In analysis pass, we scan the source code to gather all
stack allocations of the function which has on-stack memory
object. Since all stack allocations are placed in the first basic
block(BB) of the function, we only need to go through the
first BB.

Then, based on the information of stack allocation we
collected, a module pass will clone the function several times.
The number of clones has a upper bound as the factorial
of the number of stack allocations or a threshold set by
the programmer, whichever is smaller. The final analysis
pass will randomize the layout of the stack for each cloned
instance. So each function has a unique and randomized stack
allocation. Notably, no allocation alignment is required here.

B. Instrumental Pass

The instrumental pass will transform the original function to
a function wrapper. The first step is to remove all BBs from the
original function. Then we insert a BB to generate a random
number to determine which randomized function to call. The
third step is to create callee instructions of the cloned and
randomized functions. Then the control flow is reconstructed,
generating control basic blocks to jump to the callee function
based on the random number generated at runtime. The final
instrumentation pass inserts canary checks before every return
location to detect attacks that will overwrite stack buffers.

IV. EVALUATION

This section presents the detailed performance and security
evaluation of Shadowclone. We run our experiments on an
Intel Xeon 6126 processor running Ubuntu 18.04 Linux with
256 GB of memory. We conduct both performance evaluation
and security analysis in order to find out the Pareto optimal
trade-off between performance and security.

A. Performance Evaluation

For performance evaluation, we evaluate Shadowclone over
6 different benchmarks. Three of them are in-House built
benchmarks(big array, wc, and compress) and the other three
are from Spec06 benchmark suite (bzip2, h264ref, and mcf )
[4].

We compile each benchmark with three different config-
urations: each function has up to 4, 8, and 16 clones re-
spectively. Since our binary generation and execution involves
randomness, for each benchmark and each configuration, we
would generate three different binaries, and for each binary
we would execute it for 3 times. The performance of a

specific benchmark with a specific configuration is the average
execution time of the total 9 runs (3 binaries, each with 3 runs).

Fig. 3. Performance Overhead of Shadowclone over 6 Benchmarks

Initially, we would expect the execution time of Shadow-
clone to be significantly faster than that of Smokestack [3]
because we are doing more during compile time and less
during the runtime. As shown in fig.3, while in 3 out of 6
benchmarks we evaluate, we see little to none performance
overhead, Shadowclone induces significant performance over-
head in the rest three benchmarks. For benchmark h264ref
which has a large code size with a great number of function
calls, the performance overhead can go up to 6x.

With in-depth analysis, we find out that Shadowclone has
significant impact on spatial and temporal locality of the
I-Cache and speculative execution - features that modern
processors heavily rely on to improve performance.

Fig. 4. Code Size Overhead of Shadowclone over 6 Benchmarks in KB

Spatial Locality: As shown in fig.4, the code size of the
generated binary increases proportionally to the number of
variances we generate for each function. Due to the significant
increase in the code size and the fact that programs generated
by Shadowclone would randomly execute an arbitrary region,
the spatial locality is severely impacted. Fig.5 illustrates that
the number of I-Cache misses increases along with the in-
creasing code size.

Temporal locality and speculative execution: At the be-
ginning of each function call, the program would first generate
a random value and use it to branch into one of the basic
blocks which contains a clone of the original function. Due
to the nature of randomness, it is theoretically impossible
for the processor to predict which clone would be executed



Fig. 5. Percentage of # of I-Cache Misses Increase of Shadowclone over 6
Benchmarks

Fig. 6. Percentage of # of Branch Misprediction Increase of Shadowclone
over 6 Benchmarks

and thus makes the execution sequential in that code region.
Since we randomly choose one clone to run among the total
M clones, the chance that a single clone would be executed
in two consecutive runs is small, for which we also lose the
temporal locality of the functions. As shown in fig.6, the
number of branch misprediction has a strong correlation to
the performance overhead, which indicates that the impact of
Shadowclone on speculative execution and temporal locality
contributes significantly to the performance overhead.

The insights we gain from the analysis above show that
the performance of small programs with fewer function calls
would not be severely influenced by Shadowclone whilst
that of the large programs with a great number of function
calls would suffer much. This also leaves a door for future
optimizations.

B. Security Analysis

In this section, we evaluate how efficient Shadowclone is at
thwarting and also detecting DOP attacks. The metrics we use
is the probability that an attacker can successfully compromise
1, 2, or 3 functions by DOP attacks without being detected.
To be conservative, we assume the attacker is able to learn
the stack layout of a specific clone after only observing it
once. We also assume that the attacker is sophisticated enough
so that he would never step onto control flow data or other
content-sensitive data which would lead to a sigfault. Both
assumptions we make here are very hard to achieve in real-
world environment.

Since both the stack variables and the insertion point of
the canary are random, there is always 1

2 chance that the
canary would lay in between the target variable and the
vulnerable buffer. Therefore, the attacker would have 1

2 chance
of getting detected for each DOP attack he conducts. Since
we assume the attack knows nothing about the stack layout
before conducting attack, the probability that the attacker
would succeed in the first run and not being detected is 1

N ! ·
1
2 ,

where N is the total number of stack variables in a single
function. There are on average 10 stack variables in a single
function in the spec06 benchmarks we analyzed. After the
first run, the attacker would learn at least one configuration
existing in the program, therefore the chance that the attacker
would succeed without being detected is 1

M ! ·
1
2 , where M

is the number of variances existing in our system. We add
up the probability of the attacker succeeding in the ith trail
and not being detected in the first i− 1 trails together to get
the probability of an attacker would succeed without being
detected.

Fig. 7. The Chance of an Attacker Can Compromise 1, 2, 3 Functions without
Being Detected

Fig.7 shows that if the attacker only needs to compromise
one function, the success chance is less than 3% with 16
variances per function. Furthermore, if the attack needs to
compromise more than one function to successfully achieve
the malicious goal, the success chance is less than 1% even
with only 4 variances.

V. CONCLUSION

Due to widely successful control-flow attack defenses, non-
control data attacks becomes an popular source of attacks
against programs. Many existing randomization techniques
in the code section of a program cannot effectively thwart
DOP attacks. Shadowclone excels at thwarting DOP attacks by
randomizing stack frames for functions during compile time.
Also, we insert canary to detect attacks, resulting in attackers
only have a negligible probability of attacking programs
successfully.

Evaluated on several benchmarks, our implementation of
Shadowclone in LLVM framework can efficiently thwarts and
detects DOP attacks with reasonable slowdown in program
execution.

Our proof-of-concept implementation and results demon-
strate that Shadowclone can achieve minimal performance



overhead for small programs. However, its performance de-
teriorates as the size of program gets larger and the program
gets more function calls.

ACKNOWLEDGMENT

We are grateful for the guidance from Prof. Scott Mahlke,
and assistance from Armand Behroozi, Sunghyun Park. We
would also like to offer our special thanks to Prof. Todd
Austin for providing experiment equipment and insightful
suggestions.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity,” in Proceedings of the 12th ACM Conference on
Computer and Communications Security, ser. CCS ’05. New
York, NY, USA: ACM, 2005, pp. 340–353. [Online]. Available:
http://doi.acm.org/10.1145/1102120.1102165

[2] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
2016, pp. 969–986.

[3] M. T. Aga and T. Austin, “Smokestack: Thwarting dop
attacks with runtime stack layout randomization,” in Proceedings
of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization, ser. CGO 2019. Piscataway,
NJ, USA: IEEE Press, 2019, pp. 26–36. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3314872.3314879

[4] C. D. Spradling, “Spec cpu2006 benchmark tools,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 1, pp. 130–134, 2007.


