YUNJIE PAN

(734) 747-3150 \$\partial \text{panyj@umich.edu} \$\partial \text{pyjhzwh.github.io}\$

EDUCATION

University of Michigan, Ann Arbor

Aug 2019 - Present

Ph.D. in Computer Science and Engineering, GPA: 4.0/4.0

Advisor: Prof. Scott Mahlke

Zhejiang University

Aug 2015 - June 2019

B.Eng. in Electrical Engineering, GPA: 91.04/100, Rank: 1/121

GRADUATE COURSEWORK

Computer Architecture - Computer Architecture - EECS 470 (A+), Parallel Computer Architecture - EECS 570 (A), Advanced Compilers - EECS 583 (A+), Microarchitecture - EECS 573 (A)

Machine Learning - Machine Learning - EECS 545 (A), Matrix Methods for Machine Learning - EECS 551 (A)

WORK EXPERIENCE

Twitter, Inc.

June 2021- Aug 2021

Engineering Intern, TwitterVMTeam

Manager: Y.S. Ramakrishna

- · Integrated Super-Level Parallelism algorithm into Graal compiler (a Java JIT compiler) 20.3 version.
- · Improved the cost model of Autovectorization, co-optimized the pre-Autovectorization phase to further speedup several benchmarks including scimark2, ionut-jvm-perforamnce and java-matrix-benchmark.

RESEARCH EXPERIENCE

BITSET: An Energy Efficient Software-Hardware Co-design solution for Convolutional Neural Network Jan 2020 - May 2021

CSE Department, University of Michigan, Ann Arbor

- Advisor: Prof. Scott Mahlke onvolution operations early while
- · Proposed an early activation technique to terminate computation of convolution operations early while maintaining the high accuracy of CNNs. It yields 1.60x speedup and 1.45x energy efficiency over a state-of-art CNN accelerator UNPU.
- · Designed a novel architecture that enables early activation convolution operations in a bit-serial manner, which also allows fully-variable weight bit-precision.

Distribution-driven neural network quantization without training Oct 2018 - May 2019 Institute of VLSI design, Zhejiang University, China Advisor: Dr. Kejie Huang

- · Developed a novel hardware-friendly method to quantize the weight value of the neural network in the log domain based on the double-peak distribution of pruned CNN weights.
- · Explored parameters to balance granular distortion and overload distortion and adjusted the precision of each layer according to their tolerance for precision loss.
- Explored a simple approach to incrementally quantized both data and weights and then compensated the precision loss by updating the values of the remaining weights.

Register-constrained scheduling in high level synthesis

July 2018 - Sept 2018

Computer System Laboratory, Cornell University

Advisor: Prof. Zhiru Zhang

 \cdot Explored an open question on register-constrained scheduling of high-level synthesis (HLS).

· Transformed the register-constrained scheduling problems into integer linear programming (ILP) form and solved them by CPLEX.

· Proposed three different heuristic algorithms to solve the register-constrained scheduling problem which has 100x-500x speedup compared with ILP form solved by CPLEX.

COURSEWORK PROJECTS

4-way Superscalar R10K Out-of-Order Processor

Fall 2019

Computer Architecture (EECS 470), Prof. Ronald G. Dreslinski

Designed and implemented a synthesizable four-way superscalar Out-of-Order processor in Verilog HDL with speculative LSQ, instruction prefetching and post-store retirement buffer, and developed graphical debugging tool.

Shadowclone: Thwarting and Detecting DOP Attacks with Stack Layout Randomization and Canary Fall 2019

Advanced Compilers (EECS 583), Prof. Scott Mahlke

Developed a compile time stack layout randomization scheme- Shadowclone -to thwart and detect DOP attacks effectively, and implemented with LLVM. Shadowclone generates randomized clones of vulnerable target functions and randomly selects one copy of clones to execute during runtime.

TEACHING EXPERIENCE

Advanced Compilers (EECS 583)

Fall 2020

Computer Science and Engineering, University of Michigan

- \cdot Hold office hour for a class of more than 100 students 3 times a week
- · Prepare LLVM homework template for compiler optimization, plan review slides and grade assignments

SKILLS

Programming Languages	C, C++, Python, Verilog, Julia, Bash
Tools	PyTorch, Caffe, LLVM, Vivado

HONORS AND AWARDS

National Scholarship (rank 1/330)	
First-class Scholarship for Outstanding Students (top 3% of school)	Nov~2016
Zhejiang Provincial Government Scholarship (top 3% of school)	Nov 2017
Second-class Scholarship for Outstanding Students (top 10% of school)	Nov 2017
Wang Guosong Scholarships (The highest honor of the scholarship of EE Department)	Oct 2018