

BitSET: Bit-Serial Early Termination for Computation Reduction in Convolutional Neural Networks

Yunjie Pan, Jiecao Yu, Andrew Lukefahr, Reetuparna Das, Scott Mahlke

University of Michigan panyj@umich.edu CASES'23 Sept 20, 2023

Conv and FC Dominates the CNN Workloads

>80% of the runtime is Convolution (Conv) and Fully-connected (FC) layers

The main operation is MAC (Multiply-Accumulate)

Research Challenge

How to reduce the number of MAC operations in CNN inference?

Solution: BitSET, Software-Hardware Co-design

Accelerator

Customized hardware

Conventional Methods to Reduce # MAC Operations

- Quantization: reduce precision
- **Pruning**: Make redundant weight values to be zero
- Bit-serial computation: bit-level sparsity
- Early Exit: Trade off accuracy with efficiency

Can We **aggressively** Skip **Bit-level** Computation?

- Quantization: reduce precision
- **Pruning**: Make redundant weight values to be zero
- Bit-serial computation: bit-level sparsity
- Early Exit: Trade off accuracy with efficiency

How?

Runtime information using characteristic of CNN model structure Why bit-level?

Finer-granularity compared to value-level (stop at any bit)

Characteristic of the CNN Model Structure

ReLU clamps negative values to zero Don't care how "negative" the value is

Opportunities to Skip Computation

>50% of Conv/Fc outputs are negative, resulting in great sparsity after ReLU

Skip "Negative" Computation at Bit-level

- Early Exit with high-order bits of weights for negative outputs
 - Predict and skip
 - Use as few bits of weights as possible, do as little computation as possible
- Use all bits of weights for positive outputs
 - Exact values
 - Act as normal MAC

Early Termination: Fewer Bits of Weights For Neg Outputs

Normal Bit-serial MAC

Normal Bit-serial MAC (Step 1 / 4)

Normal Bit-serial MAC (Step 2 / 4)

Normal Bit-serial MAC (Step 3 / 4)

Normal Bit-serial MAC (Step 4 / 4)

Bit-serial MAC With Early Termination (Step 1)

Bit-serial MAC With Early Termination (Step 2)

Encoding For Weights

Existing Encodings

2's complement

for 8-bit weights

BitSET Encoding

+8 -4 -2 +1 =3

Needs at least first **6 bit**

Needs at least first **4 bit**

1's complement

Needs the 1st bit only

for 8-bit weights

Architecture Overview

- Architecture:
 - 2D MXN PE array
 - Unified Buffer (IF/ OF)
 - Weight Buffer
- Dataflow: Output Stationary (OS)
- Reduce workload imbalance:
 Double buffering

PE Microarchitecture

- **Compute Lane** uses LUT for bit-serial MAC operation
- **BPAU** compares Psum with Thr and send terminate signal
- Skip Matrix Buffer store the information of whether to skip the corresponding weight

Experiment Setup

Workloads

Datasets	CNN models
CIFAR-10	All-CNN-Net, ResNet20
ImageNet	AlexNet, ResNet18/50/152, GoogleNet, MobileNet-v2/v3

Hardware Implementation

- Implemented in SystemVerilog
- Synopsys Design Compiler with 45nm Nangate Open-cell Library
- Cycle-level accurate simulator to model latency
- Baseline design: UNPU[1], A bit-serial CNN accelerator
- Area overhead of BitSET is 2.3% over UNPU baseline

[1]Lee, Jinmook, et al. "UNPU: An energy-efficient deep neural network accelerator with fully variable weight bit precision." IEEE Journal of Solid-State Circuits 54.1 (2018): 173-185.

Speedup Over UNPU (precision = 8 bit or 16 bit)

On average, 1.6x speedup over UNPU due to 52% bit-level MAC operation reduction

Energy Efficiency Improvement Over UNPU

On average, 1.4x energy efficiency improvement over UNPU

Speedup With Different Accuracy Loss Constraints

As accuracy loss tolerance is relaxed more, the speedup increases

Conclusion

- BitSET leverages the runtime information to predictively terminate bit-level computation early in CNNs.
- BitSET is a hardware-software co-design, which includes an algorithm, an encoding and an accelerator.
- 1.6x speedup and 1.4x energy efficiency improvement when allowing 1% accuracy loss

Q&A?