
4-way Superscalar R10K Out-of-Order Processor

EECS 470: Computer Architecture

Fall 2019
Group 8

OoO

Xiuneng Lu
University of Michigan
xiuneng@umich.edu

Siyu Niu
University of Michigan
siyuniu@umich.edu

Yunjie Pan
University of Michigan
panyj@umich.edu

Runyu Zheng
University of Michigan
runyuz@umich.edu



1 Introduction

Out-of-order pipelining is widely used in high-performance processors to avoid some kinds of stalls that
decreasing CPI. This report describes a 4-way Superscalar Out-of-Order Processor in SystemVerilog imple-
mented by Group 8 OoO for EECS 470 final project. Our goal is to design a core with several advanced
features and high performance while maintaining correctness.

2 Features
Feature Included Comments
RISC V R10k OoO Processor Yes
Graphical debugging Tool Yes Visualize pipeline information with ncurses.
Automated regression testing
infrastructure

Yes Automatically test the correctness of our design with shell.

Superscalar Yes Fix superwidth to be four.
Store-to-load forwarding in
LSQ

Yes Forward SW to LW, LH and LB from store queue or post
store buffer.

Loads issue out-of-order
past pending stores (non-
speculative)

Yes Once all previous load have their address ready and no data
can be forwarded, load can be issued.

Post-retirement store buffer Yes FIFO buffer size of 16. When store retired, data and address
are stored here, waiting to be stored in cache.

Multiple outstanding load
misses

Yes Have non-blocking cache

Next-line or stride prefetch-
ing for instructions and/or
data

Yes When fetch stage requires a specific instruction, search the
next 16 instructions, if they are not in icache, issue a fetch
request.

Write-back data cache Yes Dcache is a write-back, write-allocate cache
Associativity > 1 Yes Both Icache and Dcache are N-way associative caches
Victim cache Yes A victim cache is fully associative cache placed in the refill

path of Dcache.
Return address stack Yes When the destination or the source register of a jump in-

struction is a link register, push or pop to RAS.
Loads speculatively issue
past pending stores

No Implemented and tried on trivial cases. Still some bugs
about rolling back and recovering.

Load dependence predictor No Implemented, basically two way cache. Store the address of
any load-store forwarding pair to predict load dependency
, the structure is too inefficiency and impact on our critical
path.

Table 1: Features

1



3 Design

3.1 Top Level Diagram

The top-level diagram is shown in Figure 1.

Figure 1: Top level design.

3.2 Design Choices

3.2.1 Post store retirement buffer

When a store instruction is retired (worst case 4 per
cycle), instead of sticking them in the store queue,
waiting Dcache to store them in order, we just put
the data and address in the FIFO buffer, so the re-
tire stage won’t be stalled. Because both data and
address are ready, if a later load use it, data can be
forwarded through our ”SEARCH” logic. We allow
the head of buffer to be stored into Dcache to ensure
in order store. In this way, we get away with store
miss penalty.

3.2.2 Load queue issue & complete policy

Since load instruction can be issued (send address
to Dcache or forwarding data from other place) and
completed (send data to complete stage) out of or-

der, we could make load queue a subset of RS. We
make load queue a subset of ROB because we want
to know the relative order of load instruction. We
believe that earlier load should have larger priority
to be issued and to complete buffer because later in-
structions are likely to be dependent on previous load
instructions, especially after load miss. So our issue
and complete policy for load queue is searching from
head to tail, and find the first super-width number of
qualified load instructions.

3.2.3 Store load forwarding logic

In our implementation, we allow store word forward
data to any type of load instruction(LW, LH & LB).
Though store half and store byte can forward data to
load instruction in some special cases, but that’s rare
and would cause cost more latency.

2



3.2.4 Complete buffer size & input priority

Since our super width is 4, with 4 ALU, 4 Multiplier
and 4 load buffers, in the worst case, we will have
12 instruction completed. However, we have only
4 CDB. So the complete instruction (data and tags)
must be put into a buffer to solve this problem. Un-
like post store retirement buffer, which a larger size
could degrade the performance a lot, (because later
instructions need to judge if data needs to be for-
warded. Larger size would made the judgement com-
plex and slow.) we can make complete buffer large
enough so that our pipeline won’t be stall on execute
stage. After our estimation, (not precise but must be
greater than the upper bound) we make the complete
buffer size equal to Superwidth×(load miss cycles+
mult stage cycles + 3) = 52.

We believe instructions with longer latencies should
have larger priority to complete, because later in-
struction is more likely to be dependent on them.
For our case, we make priority Multiply > Load >
ALU.

3.2.5 Dcache

Our Dcache is a N-way set associative, write-
back, write-allocate cache. We apply least-recently-
used(LRU) replacement policy to decide which way
of data to be evicted if N ≥ 2. Because of LSQ for-
warding, Dcache is able to deal with load and store
instructions separately. For write-allocate cache,
both load and store requires to read data from main
memory. Only when the required data is loaded
on Dcache, can load queue get data or store queue
write data. For write-back cache, if the evicted data
from cache is dirty, which means previous store in-
structions has written new value to that address, the
evicted data need to be write back to main memory.

Our Dcache is a non-blocking cache, which means
it can deal with multiple miss load instructions. In
particular, our Dcache can deal with SUPERWIDTH
load instructions from load queue at the same time.
Once a load instruction is hit in Dcache, it can be

replaced with a new load instruction in Dcache in
the next cycle. Since Dcache can deal with SUPER-
WIDTH load instructions, if more than one load in-
struction is miss in Dcache, Dcache can send load
request to memory in pipeline manner. In such case,
Dcache can hide memory latency.

To hide memory write latency, we use a writeback
buffer to store all the dirty evicted data, waiting for
being granted for memory bus. A victim cache is
also implemented in our Dcache design. The victim
cache is fully associative, 8 byte (a cacheline) cache
placed in the refill path of Dcache. Load instructions
can refer to victim cache for the latest evicted data to
save the time to load data from memory(100ns).

There may be multiple load/store request from cache
to memory, the memory grant priority in our design
is as follows: Icache fetch miss > Dache load miss >
Dcache store miss > Dcache writeback buffer store
to memory > Icache prefetch.

4 Performance Analysis

4.1 N-way Superscalar

We implement 1-way, 2-way, and 4-way superscalar
of our out-of-order CPU. The CPI for testcases is
shown in Fig 5. The average CPI of 1-way, 2-
way, 4-way CPI are 2.07, 1.73, 1.63, respectively.
Superscalar is able to drastically decrease the CPI,
since it can exploit instruction-level parallelism. But
for test cases with lots of strong dependence (like
matrix mult rec), the 2-way or 4-way superscalar
has less advantage over 1 way but still gain some
speedup because of faster fetch, dispatch and retire.
Besides, the RAS has contributes a lot to the perfor-
mance of superscalar CPU. Since RAS is able to pre-
dict jump and return address, we can achieve good
CPI in many recursive programs like mergesort. And
thanks to our branch prediction, programs with long
loops are able to achieve low CPI since they can save
the time for the rollback from branch mispredict.

3



One of the most important bottleneck in our design is
the limitation of memory bus. In other words, Icache
and Dcache share the same memory bus, which is
only 64 bits. As stated in 3.2.5, we have a sophisti-
cated grant priority over different memory and cache
units. This will limit our CPI when there are dense
load and store instructions in the program. Another
disadvantage of superwidth CPU is that as the super-
width increase, the clock cycle need to increase to
avoid negative slack. Because we need to update su-
perwidth variables in the same cycle, the latency of
it will contribute to the critical path. Therefore, we
need to tradeoff for CPI and clock cycle considering
different superwidth.

Figure 2: CPI of our CPU with different Superscalar

4.2 Branch history table

As shown in Figure 3, prediction of always taken has
already gives us decent performance, but prediction
aided by BHT also gives us slight performance boost.

Figure 3: CPI influenced by branch history table.

4.3 Next-line prefetch

As shown in Figure 4, instruction prefetch gives us
huge performance boost in lots of test cases. How-
ever, prefetching next 8 instructions or next 16 in-
structions does not make much difference.

Figure 4: CPI influenced by instruction prefetch.

4.4 Store Load forwarding

Since many of the program involves lots of array
computation, data is frequently load and stored from
the same place. Having a load store forwarding
would help hide the cache miss penalty. To verify
this, we turn off load store forwarding unit, using o0
to run all the .c test, here’s the result:

4



Figure 5: CPI of our CPU with/without store load
forwarding

As we can see, with store load forwarding, our CPI
drops from 1.38 to 1.13, which is a great improve-
ment.

4.5 Cache Associativity

Since fetched instructions are usually continuous, but
store or load addresses are usually not, in this sec-
tion we focus on discussing how the associativity of
Dcache will infect out CPI. Figure 6 shows the result
of CPI with different associativity in Dcache. The
higher the number of way, the higher of associativ-
ity of cache. The result shows that when the way of
Dcache is set as 2 or 4, our CPU can achieve optimial
performance.

If the associativity is 1, which means that Dcache is
a direct-mapped cache, there may be multiple load
or store address mapped to the same index, and the
data will be evicted from Dcache, and load back to
Dcache back and forth, which will increase the time
waiting for memory read/write (100ns). On the other
hand, if the associativity is relatively high, it takes
time to iterate through all the lines, and it has to iter-
ate over entire cache set to locate a block.

To make a trade-off between direct mapped and fully
associative cache, we fix our Dcache as a 2-way set-
associative cache.

Figure 6: CPI of our CPU with different associativity
in Dcache

4.6 Critical Path

Before we modifying our Dcache, the critical path
is the communication between load queue, Dcache
and memory. Because we use asynchronous signal
to tell whether the load instruction is hit in Dcache
or not, Dcache need to wait for memory send back
new value before knowing the load instruction is hit
or not. The previous minimum clock cycle for syn-
thesis is around 33 cycles. After we modifying the
signal to be synchronized, the clock cycle can be re-
duced by half, to 17 cycles.

The critical path in our final design is the commu-
nication between Dcache and memory. Because our
design is a 4-way superscalar CPU, updating super-
width values in a clock cycle contribute to the latency
in critical path. One possible solution to reduce crit-
ical path latency is to reduce superwidth in our de-
sign. But it will increase the CPI, as shown in Figure
5.

5



5 Contribution
WHO WHAT
Xiuneng Lu Execute Stage, Complete Stage, Retire stage, Map Table, Load

Store Queue, Pipeline Integration & Debug
Siyu Niu Architecture Map, Issue Stage, ROB, Physical Register, Pipeline

Integration & Debug, synthesizing & Debug
Yunjie Pan Fetch Stage, ICache, Branch Prediction, Freelist, DCache,

Pipeline Integration & Debug
Runyu Zheng Dispatch Stage, Issue Stage, ROB, RS, Branch Prediction,

ICache, Visualized Debugger, Pipeline Integration & Debug

Table 2: Contribution Taable

6


	Introduction
	Features
	Design
	Top Level Diagram
	Design Choices
	Post store retirement buffer
	Load queue issue & complete policy
	Store load forwarding logic
	Complete buffer size & input priority
	Dcache


	Performance Analysis
	N-way Superscalar
	Branch history table
	Next-line prefetch
	Store Load forwarding
	Cache Associativity
	Critical Path

	Contribution

